Brief Operating Instructions

Levelflex FMP56, FMP57

Guided Level-Radar

These Instructions are Brief Operating Instructions; they do not replace the Operating Instructions included in the scope of supply.

For detailed information, refer to the Operating Instructions and other documentation on the CD-ROM provided or visit "www.endress.com/deviceviewer".
Table of contents

1 **Important document information** .. 3
 1.1 Document conventions ... 3

2 **Basic safety instructions** ... 5
 2.1 Requirements concerning the staff ... 5
 2.2 Designated use ... 5
 2.3 Workplace safety ... 6
 2.4 Operational safety .. 6
 2.5 Product safety .. 6

3 **Product description** .. 7
 3.1 Compact device Levelflex .. 7
 3.2 Electronics housing ... 8

4 **Incoming acceptance and product identification** 9
 4.1 Incoming acceptance ... 9
 4.2 Product identification ... 10

5 **Storage, Transport** .. 11
 5.1 Storage conditions .. 11
 5.2 Transport product to the measuring point 11

6 **Mounting** .. 13
 6.1 Suitable mounting position ... 13
 6.2 Notes on the process connection ... 14
 6.3 Securing the probe ... 17
 6.4 Special mounting conditions .. 20
 6.5 Mounting the device ... 20
 6.6 Post-installation check ... 26

7 **Electrical connection** .. 27
 7.1 Connection options ... 27
 7.2 Connection conditions .. 30
 7.3 Connection data ... 31
 7.4 Connecting the measuring device .. 33
 7.5 Post-connection check ... 35

8 **Commissioning** ... 36
 8.1 Display and operating module .. 36
 8.2 Operating concept ... 38
 8.3 Adjust the display contrast ... 40
 8.4 Unlock the device ... 40
 8.5 Set the operating language ... 42
 8.6 Configuration of a level measurement 43
 8.7 User-specific applications (operation) 44
1 Important document information

1.1 Document conventions

1.1.1 Safety symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>! DANGER!</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid this</td>
</tr>
<tr>
<td></td>
<td>situation will result in serious or fatal injury.</td>
</tr>
<tr>
<td>! WARNING!</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid this</td>
</tr>
<tr>
<td></td>
<td>situation can result in serious or fatal injury.</td>
</tr>
<tr>
<td>! CAUTION!</td>
<td>This symbol alerts you to a dangerous situation. Failure to avoid this</td>
</tr>
<tr>
<td></td>
<td>situation can result in minor or medium injury.</td>
</tr>
<tr>
<td>NOTICE!</td>
<td>This symbol contains information on procedures and other facts which</td>
</tr>
<tr>
<td></td>
<td>do not result in personal injury.</td>
</tr>
</tbody>
</table>

1.1.2 Electrical symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.................................</td>
<td>Direct current</td>
</tr>
<tr>
<td>A0011197</td>
<td>A terminal to which DC voltage is applied or through which direct current flows.</td>
</tr>
<tr>
<td>.................................</td>
<td>Alternating current</td>
</tr>
<tr>
<td>A0011198</td>
<td>A terminal to which alternating voltage (sine-wave) is applied or through which alternating current flows.</td>
</tr>
<tr>
<td>.................................</td>
<td>Ground connection</td>
</tr>
<tr>
<td>A0011200</td>
<td>A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.</td>
</tr>
<tr>
<td>.................................</td>
<td>Protective ground connection</td>
</tr>
<tr>
<td>A0011199</td>
<td>A terminal which must be connected to ground prior to establishing any other connections.</td>
</tr>
<tr>
<td>.................................</td>
<td>Equipotential connection</td>
</tr>
<tr>
<td>A0011201</td>
<td>A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice.</td>
</tr>
</tbody>
</table>

1.1.3 Tool symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0011219</td>
<td>Phillips head screwdriver</td>
</tr>
<tr>
<td>A0011220</td>
<td>Flat blade screwdriver</td>
</tr>
<tr>
<td>A0013442</td>
<td>Torx screwdriver</td>
</tr>
<tr>
<td>A0011221</td>
<td>Allen key</td>
</tr>
<tr>
<td>A0011222</td>
<td>Hexagon wrench</td>
</tr>
</tbody>
</table>
1.1.4 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Allowed](image) | Allowed
Indicates procedures, processes or actions that are allowed. |
| ![Preferred](image) | Preferred
Indicates procedures, processes or actions that are preferred. |
| ![Forbidden](image) | Forbidden
Indicates procedures, processes or actions that are forbidden. |
| ![Tip](image) | Tip
Indicates additional information. |
| ![Reference to documentation](image) | Reference to documentation
Refers to the corresponding device documentation. |
| ![Reference to page](image) | Reference to page
Refers to the corresponding page number. |
| ![Reference to graphic](image) | Reference to graphic
Refers to the corresponding graphic number and page number. |
| ![Series of steps](image) | Series of steps |
| ![Result of a sequence of actions](image) | Result of a sequence of actions |

1.1.5 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
</tr>
<tr>
<td>1. 2. 3 ...</td>
<td>Series of steps</td>
</tr>
<tr>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
</tr>
</tbody>
</table>
| ![EX](image) | Hazardous area
Indicates a hazardous area. |
| ![Safe area (non-hazardous area)](image) | Safe area (non-hazardous area)
Indicates a non-hazardous location. |
2 Basic safety instructions

2.1 Requirements concerning the staff
The staff must fulfill the following requirements for their tasks:
► Trained staff: Must have a qualification which corresponds to their function and tasks.
► Authorized by the plant operator.
► Familiar with the national regulations.
► Before starting their work: Must have read and understood all instructions in the operating manual and supplementary documentation as well as the certificate (depending on the application).
► Must comply with all instructions and the regulatory framework.

2.2 Designated use
Application and measured materials
The measuring device described in these Operating Instructions is intended only for level measurement of bulk solids. Depending on the version ordered the device can also measure potentially explosive, flammable, poisonous and oxidizing materials.

Observing the limit values specified in the "Technical data" and listed in the Operating Instructions and supplementary documentation, the measuring device may be used for the following measurements only:
► Measured process variables: level
► Calculated process variable: Volume oder mass in arbitrarily shaped vessels (calculated from the level by the linearization functionality)

To ensure that the measuring device remains in proper condition for the operation time:
► Use the measuring device only for measured materials against which the process-wetted materials are adequately resistant.
► Observe the limit values in "Technical data".

Incorrect use
The manufacturer is not liable for damage caused by improper or non-designated use.

Verification for borderline cases:
► For special measured materials and cleaning agents, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of wetted materials, but does not accept any warranty or liability.

Residual risk
The electronics housing and its built-in components such as display module, main electronics module and I/O electronics module may heat to 80 °C (176 °F) during operation through heat transfer from the process as well as power dissipation within the electronics. During operation the sensor may assume a temperature near the temperature of the measured material.

Danger of burns due to heated surfaces!
► For high process temperatures: Install protection against contact in order to prevent burns.
2.3 Workplace safety

For work on and with the device:
► Wear the required personal protective equipment according to federal/national regulations.

2.4 Operational safety

Risk of injury!
► Operate the device in proper technical condition and fail-safe condition only.
► The operator is responsible for interference-free operation of the device.

Conversions to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers
► If, despite this, modifications are required, consult with Endress+Hauser.

Repair

To ensure continued operational safety and reliability,
► Carry out repairs on the device only if they are expressly permitted.
► Observe federal/national regulations pertaining to repair of an electrical device.
► Use original spare parts and accessories from Endress+Hauser only.

Hazardous area

To eliminate a danger for persons or for the facility when the device is used in the hazardous area (e.g. explosion protection, pressure vessel safety):
► Based on the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area.
► Observe the specifications in the separate supplementary documentation that is an integral part of these Instructions.

2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which they are safe to operate.

It fulfills general safety requirements and legal requirements. It also conforms to the EC directives listed in the device-specific EC declaration of conformity. Endress+Hauser confirms this fact by applying the CE mark.
3 Product description

3.1 Compact device Levelflex

![Diagram of Levelflex device]

- **1** Electronics housing
- **2** Process connection (here as an example: flange)
- **3** Rope probe
- **4** End-of-probe weight
- **5** Rod probe
3.2 Electronics housing

2 Design of the electronics housing

1 Electronics compartment cover
2 Display module
3 Main electronics module
4 Cable glands (1 or 2, depending on instrument version)
5 Nameplate
6 I/O electronics module
7 Terminals (pluggable spring terminals)
8 Connection compartment cover
9 Grounding terminal
4 Incoming acceptance and product identification

4.1 Incoming acceptance
If one of the conditions does not comply, contact your Endress+Hauser distributor.

4.2 Product identification

The following options are available for identification of the measuring device:

- Nameplate specifications
- Order code with breakdown of the device features on the delivery note
- Enter serial numbers from nameplates in \textit{W@M Device Viewer} (www.endress.com/deviceviewer): All information about the measuring device is displayed.

For an overview of the scope of the Technical Documentation provided, refer to the following:

1. Enter serial numbers from nameplates in \textit{W@M Device Viewer} (www.endress.com/deviceviewer)

3 Example of a nameplate

1 Order code
2 Serial number (Ser. no.)
3 Extended order code (Ext. ord. cd.)
Only 33 digits of the extended order code can be indicated on the nameplate. If the extended order code exceeds 33 digits, the rest will not be shown. However, the complete extended order code can be viewed in the operating menu of the device (Diagnostics → Device info → Extended order code 1/2/3).

For detailed information about interpreting the nameplate specifications, refer to the Operating Instructions for the device on the CD-ROM provided.

5 Storage, Transport

5.1 Storage conditions
- Permitted storage temperature: –40 to +80 °C (–40 to +176 °F)
- Use the original packaging.

5.2 Transport product to the measuring point

⚠ WARNING
Risk of injury if the housing breaks away!
- Transport the measuring device to the measuring point in its original packaging or at the process connection.
- Comply with the safety instructions, transport conditions for devices over 18kg (39.6lbs).
6 Mounting

6.1 Suitable mounting position

6.1.1 Mounting distances

- Distance (A) between wall and rod or rope probe:
 - for smooth metallic walls: > 50 mm (2")
 - for plastic walls: > 300 mm (12") mm to metallic parts outside the vessel
 - for concrete walls: > 500 mm (20") , otherwise the available measuring range may be reduced.
- Distance (B) between rod or rope probe and internal fittings in the vessel: > 300 mm (12")
- Distance (C) from end of probe to bottom of the vessel:
 - Rope probe: > 150 mm (6 in)
 - Rod probe: > 10 mm (0.4 in)
6.1.2 Additional conditions

- When mounting in the open, a weather protection cover (1) may be installed to protect the device against extreme weather conditions.
- In metallic vessels: Preferably do not mount the probe in the center of the vessel (2), as this would lead to increased interference echoes.

 If a central mounting position cannot be avoided, it is crucial to perform an interference echo suppression (mapping) after the commissioning of the device.
- Do not mount the probe in the filling curtain (3).
- Avoid buckling the rope probe during installation or operation (e.g. through product movement against silo wall) by selecting a suitable mounting location.
- Check the probe regularly for defects.

> With suspended rope probes (probe end not fixed at the bottom) the distance between the probe rope and internal fittings in the tank must not fall below 300 mm (12”) during the entire process. A sporadic contact between the probe weight and the cone of the vessel, however, does not influence the measurement as long as the dielectric constant of the medium is at least DC = 1.8.

> When mounting the electronics housing into a recess (e.g. in a concrete ceiling), observe a minimum distance of 100 mm (4 inch) between the cover of the terminal compartment / electronics compartment and the wall. Otherwise the connection compartment / electronics compartment is not accessible after installation.

6.2 Notes on the process connection

Probes are mounted to the process connection with threaded connections or flanges. If during this installation there is the danger that the probe end moves so much that it touches the tank floor or cone at times, the probe must, if necessary, be shortened and fixed down. (→ 17).

6.2.1 Threaded connection

![Mounting with threaded connection; flush with the container ceiling](image)
Seal

The thread as well as the type of seal comply to DIN 3852 Part 1, screwed plug form A. They can be sealed with the following types of sealing rings:

- Thread G3/4": According to DIN 7603 with the dimensions 27 x 32 mm
- Thread G1-1/2": According to DIN 7603 with the dimensions 48 x 55 mm

Please use a sealing ring according to this standard in the form A, C or D and of a material that is resistant to the application.

For the length of the screwed plug refer to the dimensional drawing:

- FMP56:
- FMP57:

6.2.2 Nozzle mounting with flange

Hight and diameter of the nozzle

- Permissible nozzle diameter: ≤ 150 mm (6 in).
 For larger diameters the near range measuring capability may be reduced.
 For nozzles ≥ DN300: (→ 16).
- Permissible nozzle height ¹): ≤ 150 mm (6 in).
 For a larger height the near range measuring capability may be reduced.
 Larger nozzle heights may be possible in special cases (see section "Rod extension/centering HMP40 for FMP57").

With thermally insulated vessels the nozzle should also be insulated in order to prevent condensate formation.

Rod extension/centering HMP40 for FMP57

For FMP57 with rope probes the rod extension/centering HMP 40 is available as an accessory. It has to be used if otherwise the probe rope comes into contact with the lower edge of the nozzle.

¹) Larger nozzle heights on request
This accessory consists of the extension rod corresponding to the nozzle height, on which a centering disk is also mounted if the nozzles are narrow or when working in bulk solids. This component is delivered separately from the device. Please order the probe length correspondingly shorter.

Centering disks with small diameters (DN40 and DN50) may only be used if there is no significant build-up in the nozzle above the disk. The nozzle must not become clogged by the product.

Installation in nozzles ≥ DN300

If installation in ≥ 300mm/12" nozzles is unavoidable, installation must be carried out in accordance with the sketch on the right.

1. Lower edge of the nozzle
2. Approx. flush with the lower edge of the nozzle (± 50 mm/2")
3. Plate
4. Pipe Ø 150 to 180 mm (6 to 7 inch)

<table>
<thead>
<tr>
<th>Nozzle diameter</th>
<th>Plate diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 mm (12")</td>
<td>280 mm (11")</td>
</tr>
<tr>
<td>≥ 400 mm (16")</td>
<td>≥ 350 mm (14")</td>
</tr>
</tbody>
</table>
6.3 Securing the probe

6.3.1 Securing rope probes

- The end of the probe needs to be secured under the following conditions:
 - if otherwise the probe sporadically comes into contact with the wall of the vessel, the outlet cone, internal fittings or other parts of the installation.
 - if otherwise the probe sporadically gets close to a concrete wall (minimum distance 0.5 m / 20 inch).
- The end of probe can be secured at its internal thread
 - rope 4 mm (1/6"), 316: M 14
 - rope 6 mm (1/4"), 316: M 20
 - rope 6 mm (1/4"), PA>steel: M14
 - rope 8 mm (1/3"), PA>steel: M20
- Preferably use the 6 mm (1/4") rope probe due to the higher tensile strength when fixing a rope probe.
Mounting

- The fixing must be either reliably grounded or reliably insulated. If it is not possible to mount the probe weight with a reliably insulated connection, it can be secured using an isolated eyelet, which is available as an accessory.
- In the case of a grounded fixing the **Positive echo** option must be selected in the **Expert → Sensors → EOP evaluation → EOP search mode** parameter. Otherwise the automatic probe length correction will not work.
- In order to prevent an extremely high tensile load (e.g. due to thermal expansion) and the risk of rope crack, the rope has to be slack. Make the rope longer than the required measuring range such that there is a sag in the middle of the rope that is $\geq 1\text{cm}/(1\text{ m rope length})$ [0.12 inch/(1 ft rope length)]. Tensile load limit of rope probes:

6.3.2 Securing rod probes

- For Ex-approvals: For probe lengths $\geq 3\text{ m (10 ft)}$ a support is required.
- In general, rod probes must be supported if there is a horizontal flow (e.g. from an agitator) or in the case of strong vibrations.
- Rod probes may only be supported at the end of the probe.
1 Probe rod, uncoated
2 Sleeve bored tight to ensure electrical contact between the rod and sleeve!
3 Short metal pipe, e.g. welded in place
4 Probe rod, coated
5 Plastic sleeve, e.g. PTFE, PEEK or PPS
6 Short metal pipe, e.g. welded in place

NOTICE

Poor grounding of the end of probe may cause measuring errors.
► Apply a narrow sleeve which has good electrical contact to the probe.

NOTICE

Welding may damage the main electronics module.
► Before welding: Ground the probe and dismount electronics.
6.4 Special mounting conditions

6.4.1 Non-metallic vessels

To measure, Levelflex with a rod probe needs a metallic surface at the process connection. Therefore:

- Select an instrument version with metal flange (minimum size DN50/2').
- Or: mount a metal sheet with a diameter of at least 200 mm (8") to the probe at the process connection. Its orientation must be perpendicular to the probe.

6.5 Mounting the device

6.5.1 Required mounting tools

- For mounting thread 3/4": Hexagonal wrench 36 mm
- For mounting thread 1-1/2": Hexagonal wrench 55 mm
- To shorten rod or coax probes: Saw
- To shorten rope probes:
 - Allen key AF 3 mm (for 4mm ropes) or AF 4 mm (for 6 mm ropes)
 - Saw or bolt cutter
- For flanges and other process connections: appropriate mounting tools
- To turn the housing: Hexagonal wrench 8 mm

6.5.2 Preparing the device for mounting

When shortening the probe: Enter the new length of probe into the Quick Setup which can be found in the electronics housing behind the display module.
Shortening rod probes
Rod probes must be shortened if the distance to the container floor or outlet cone is less than 10 mm (0.4 in). The rods of a rod probe are shortened by sawing at the bottom end.

Rod probes of FMP52 can not be shortened as they are coated.

Shortening rope probes
Rope probes must be shortened if the distance to the container floor or outlet cone is less than 150 mm (6 in).

Rope probes of FMP52 can not be shortened as they are coated.
1. Loosen the 3 Allen set screws using an Allen key AF3 (for 4mm ropes) or AF4 (for 6 mm ropes). Note: The set screws have got a clamping coating in order to prevent accidental loosening. Thus an increased torque might be necessary to loosen them.

2. Remove released rope from the weight.

3. Measure off new rope length.

4. Wrap adhesive tape around the rope at the point to be shortened to prevent it from fanning out.

5. Saw off the rope at a right angle or cut it off with a bolt cutter.

6. Insert the rope completely into the weight: rope 4 mm (0.16 in): 60 mm (2.4 in) deep; rope 6 mm (0.24 in): 80 mm (3.2 in) deep.

7. Screw the set screws into place. Due to the clamping coating of the setscrews application of a screw locking fluid is not necessary. Torque: rope 4 mm (0.16 in): 5 Nm (3.7 lbf ft); rope 6 mm (0.24 in): 15 Nm (11 lbf ft).

6.5.3 Mounting the device

Mounting devices with thread

Devices with mounting thread are screwed into a welding boss or a flange and are usually also secured with these.
Tighten with the hexagonal nut only:
- Thread 3/4": Hexagonal wrench 36 mm
- Thread 1-1/2": Hexagonal wrench 55 mm

Maximum permissible torque:
- Thread 3/4": 45 Nm
- Thread 1-1/2": 450 Nm

Recommended torque when using an aramid fibre seal and a process pressure of 40 bar (580 psi):
- Thread 3/4": 25 Nm
- Thread 1-1/2": 140 Nm

When installing in metal containers, take care to ensure good metallic contact between the process connection and container.

Flange mounting

If a seal is used, be sure to use unpainted metal bolts to ensure good electrical contact between probe flange and process flange.
Mounting rope probes

NOTICE

Electrostatic discharges may damage the electronics.

► Earth the housing before lowering the rope into the vessel.

When lowering the rope probe into the vessel, observe the following:

- Uncoil rope and lower it slowly and carefully into the vessel.
- Do not kink the rope.
- Avoid any backlash, since this might damage the probe or the vessel fittings.

Mounting rope probes in a partially full silo

It is not always possible to empty a silo which is already in operation. If a minimum of 2/3 of the silo is empty, it is possible to install the probe into the partially filled silo. If possible, make a visual check after the installation to see that the rope has not tangled or is lying such that it can knot when the level falls. Before full accuracy is obtained the probe rope must hang fully extended.

6.5.4 Turning the transmitter housing

To provide easier access to the connection compartment or display module, the transmitter housing can be turned:
1. Unscrew the securing screw using an open-ended wrench.
2. Rotate the housing in the desired direction.
3. Firmly tighten the securing screw. (1,5 Nm for plastics housing; 2,5 Nm for aluminium or stainless steel housing).

6.5.5 Turning the display module

1. Loosen the screw of the securing clamp of the electronics compartment cover using an Allen key and turn the clamp 90° counterclockwise.
2. Unscrew cover of the electronics compartment from the transmitter housing.
3. Pull out the display module with a gentle rotation movement.
4. Rotate the display module into the desired position: Max. 8 × 45 ° in each direction.
5. Feed the spiral cable into the gap between the housing and main electronics module and plug the display module into the electronics compartment until it engages.
6. Screw the cover of the electronics compartment firmly back onto the transmitter housing.
7. Tighten the securing clamp again using the Allen key.
6.6 Post-installation check

| ☐ | Is the device undamaged (visual inspection)? |
| ☐ | Does the device conform to the measuring point specifications?
 For example:
 - Process temperature
 - Process pressure (refer to the chapter on "Material load curves" of the "Technical Information" document)
 - Ambient temperature range
 - Measuring range |
| ☐ | Are the measuring point identification and labeling correct (visual inspection)? |
| ☐ | Is the device adequately protected from precipitation and direct sunlight? |
| ☐ | Are the securing screw and securing clamp tightened securely? |
7 Electrical connection

7.1 Connection options

7.1.1 2-wire, 4-20mA HART (FMP5x - **A...)

Without integrated overvoltage protection

1 Terminal 4...20mA HART passive
2 Active barrier with power supply (e.g. RN221N): Observe terminal voltage (→ 31)
3 HART communication resistor (≥250Ω): Observe maximum load (→ 32)
4 Connection for Field Communicator 375/475 or Commubox FXA195
5 Analog display device: Observe maximum load (→ 32)
6 Observe cable specification (→ 30)
7 Potential equalization
8 Cable entry
7.1.2 2-wire, 4-20 mA HART, 4...20mA

Without integrated overvoltage protection

This version is also suited for single-channel operation. In this case, current output 1 (terminals 1 and 2) must be used.
7.1.3 4-wire, 4-20 mA HART (FMP5x - **K/L...)

Without integrated overvoltage protection

1 Terminal 4...20mA HART active
2 Supply voltage: Observe terminal voltage (→ 31), observe cable specification (→ 30)
3 Terminal supply voltage
4 Potential equalization
5 Cable entry for power supply
6 Cable entry for signal line
7 Protective earth, observe cable specification (→ 30)
8 Protective connection; do not disconnect!
9 Analog display device: Observe maximum load (→ 32)
10 Connection Field Communicator 375/475 or Commubox FXA195
11 HART communication resistor (≥250 Ω): Observe maximum load (→ 32)
12 Signal cable including screening (if required), observe cable specification (→ 30)
13 Evaluation unit, e.g. PLC
To ensure electrical safety:
► Do not disconnect the protective connection (8).
► Disconnect the supply voltage before disconnecting the protective earth (7).

Connect protective earth (7) to the internal ground terminal (7) before connecting the supply voltage. If necessary, connect the potential matching line to the external ground terminal (4).

In order to ensure electromagnetic compatibility (EMC): Do not only ground the device via the protective earth conductor of the supply cable. Instead, the functional grounding must also be connected to the process connection (flange or threaded connection) or to the external ground terminal.

An easily accessible power switch must be installed in the proximity of the device. The power switch must be marked as a disconnector for the device (IEC/EN61010).

7.2 Connection conditions

7.2.1 Cable specification

HART
- For ambient temperature $T_U \geq 60 \, ^\circ C$ (140 °F): use cable for temperature $T_U + 20 \, K$.
- A normal device cable suffices if only the analog signal is used.
- A shielded cable is recommended if using the HART protocol. Observe grounding concept of the plant.

7.2.2 Cable diameter and cross-section of the strands

<table>
<thead>
<tr>
<th>Type of protection</th>
<th>Cable gland</th>
<th>Admissible cable diameter</th>
<th>Admissible cross-section of the strands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Plastics M20x1,5</td>
<td>5 to 10 mm (0.2 to 0.39 in)</td>
<td>0.5 to 2.5 mm2 (20 to 14 AWG)</td>
</tr>
<tr>
<td>Ex ia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex ic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex tD</td>
<td>Metal M20x1,5</td>
<td>7 to 10 mm (0.28 to 0.39 in)</td>
<td></td>
</tr>
<tr>
<td>Ex nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSA approval</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.2.3 Overvoltage protection

If the measuring device is used for level measurement in flammable liquids which requires the use of overvoltage protection according to DIN EN 60079-14, standard for test procedures 60060-1 (10 kA, pulse 8/20 μs), overvoltage protection has to be ensured by one of the following measures:
- Integrated overvoltage protection (in preparation);
 Product structure: Feature 610 "Accessory mounted", option NA "Overvoltage protection".
- External overvoltage protection, e.g. Endress+Hauser's HAW562 or HAW569.
For detailed information please refer to the following documents:
- HAW562: TI01012K
- HAW569: TI01013K

7.3 Connection data

7.3.1 2-wire, 4-20mA HART, passive

<table>
<thead>
<tr>
<th>"Power Supply, Output" ¹</th>
<th>Outputs</th>
<th>Terminal voltage</th>
<th>"Approval" ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 2-wire; 4-20mA HART</td>
<td>1</td>
<td>11.5 to 35 V ³</td>
<td>Non-Ex, Ex nA, CSA GP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.5 to 32 V ³</td>
<td>Ex ic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.5 to 30 V ³</td>
<td>Ex ia / IS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.5 to 30 V ⁴</td>
<td>Ex d / XP, Ex ic(jia), Ex tD / DIP</td>
</tr>
<tr>
<td>C: 2-wire; 4-20mA HART, 4-20mA</td>
<td>1</td>
<td>13.5 to 30 V ⁴</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12 to 30 V</td>
<td>all</td>
</tr>
</tbody>
</table>

¹) Feature 020 of the product structure
²) Feature 010 of the product structure
³) For ambient temperatures $T_a \leq -30 \, ^\circ C (-22 \, ^\circ F)$ a minimum voltage of 14 V is required for the startup of the device at the MIN error current (3.6 mA). The startup current can be parametrized. If the device is operated with a fixed current $I \geq 4.5 \, mA$ (HART multidrop mode), a voltage of 10,4 V is sufficient throughout the entire range of ambient temperatures.
⁴) For ambient temperatures $T_a \leq -30 \, ^\circ C (-22 \, ^\circ F)$ a minimum voltage of 16 V is required for the startup of the device at the MIN error current (3.6 mA).

Load (→ 32)

Residual ripple:
- $< 1 \, V_{SS}$ ($0 \, \text{to} \, 100 \, Hz$)
- $< 10 \, mV_{SS}$ ($100 \, \text{to} \, 10,000 \, Hz$)

7.3.2 4-wire, 4-20mA HART, active

<table>
<thead>
<tr>
<th>"Power supply; Output" ¹</th>
<th>Terminal voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>K: 4-wire 90-253VAC; 4-20mA HART</td>
<td>90 to 253 V$_{AC}$ (50 to 60 Hz), overvoltage category II</td>
</tr>
<tr>
<td>L: 4-wire 10,4-48VDC; 4-20mA HART</td>
<td>10.4 to 48 V$_{DC}$</td>
</tr>
</tbody>
</table>

¹) Feature 020 of the product structure
7.3.3 Maximum load

In order to ensure a sufficient terminal voltage at the device, the load resistance R (including wire resistance) must not exceed a value depending on the voltage U_0 supplied by the supply unit.

| Feature 20 "Power Supply, Output", Option A "2-wire; 4-20mA HART" |
|------------------|------------------|
| **Outputs** | **Terminal voltage** | **Feature 010 - Approval** |
| 1 | 11.5 to 35 V | Non-Ex, Ex nA, CSA GP |
| | 11.5 to 32 V | Ex ic |
| | 11.5 to 30 V | Ex ia / IS |

| Feature 20 "Power Supply, Output", Option C "2-wire; 4-20mA HART, 4-20mA" |
|------------------|------------------|
| **Outputs** | **Terminal voltage** | **Feature 010 "Approval"** |
| 1 | 13.5 to 30 V | all |
For 4-wire devices (feature 020, options "K" and "L") the admissible load is 0 to 500 Ω.

7.4 Connecting the measuring device

WARNING

Explosion hazard!

- Comply with the relevant national standards.
- Observe the specifications in the Safety Instructions (XA).
- Only use the specified cable glands.
- Check whether the supply voltage matches the specifications on the nameplate.
- Before connecting the device: Switch the supply voltage off.
- Before switching on the supply voltage: Connect the potential bonding line to the exterior ground terminal.

Required tools and accessories:

- For instruments with safety pin for the lid: AF 3 Allen key
- Wire stripping pliers
- When using stranded wires: Wire end sleeves.
1. Loosen the screw of the securing clamp of the connection compartment cover and turn the clamp 90° counterclockwise.

2. Unscrew the connection compartment cover.

3. Push the cable through the cable entry. To ensure tight sealing, do not remove the sealing ring from the cable entry.

4. Strip the cable.

5. Strip the cable ends 10 mm (0.4 in). For stranded cables, also attach wire end ferrules.

6. Firmly tighten the cable glands.

8. When using screened cable: Connect the cable screen to the ground terminal.
9. Screw the cover onto the connection compartment.
10. For instruments with safety pin for the lid: Adjust the safety pin so that its edge is over the edge of the display lid. Tighten the safety pin.

Pluggable spring-force terminals

Instruments without integrated overvoltage protection have pluggable spring-force terminals. Rigid conductors or flexible conductors with cable sleeve can directly be inserted and are contacted automatically.

To remove cables from the terminal: Press on the groove between the terminals using a flat-tip screwdriver ≤ 3 mm (0.12 inch) while pulling the cables out of the terminals.

7.5 Post-connection check

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Are cables or the device undamaged (visual inspection)?</td>
</tr>
<tr>
<td>☐</td>
<td>Do the cables comply with the requirements?</td>
</tr>
<tr>
<td>☐</td>
<td>Do the cables have adequate strain relief?</td>
</tr>
<tr>
<td>☐</td>
<td>Are all cable glands installed, firmly tightened and correctly sealed?</td>
</tr>
<tr>
<td>☐</td>
<td>Does the supply voltage match the specifications on the transmitter nameplate?</td>
</tr>
<tr>
<td>☐</td>
<td>Is the terminal assignment correct (→ 27) (→ 28) (→ 29)?</td>
</tr>
<tr>
<td>☐</td>
<td>If required: Is the protective earth connected correctly (→ 29)?</td>
</tr>
<tr>
<td>☐</td>
<td>If supply voltage is present: Is the device ready for operation and do values appear on the display module?</td>
</tr>
<tr>
<td>☐</td>
<td>Are all housing covers installed and firmly tightened?</td>
</tr>
<tr>
<td>☐</td>
<td>Is the securing clamp tightened correctly?</td>
</tr>
</tbody>
</table>
8 Commissioning

8.1 Display and operating module

8.1.1 Display appearance

5 Appearance of the display and operation module for on-site operation

1 Measured value display (1 value max. size)
1.1 Header containing tag and error symbol (if an error is active)
1.2 Measured value symbols
1.3 Measured value
1.4 Unit
2 Measured value display (2 values)
2.1 Bargraph for measured value 1
2.2 Measured value 1 (including unit)
2.3 Measured value symbols for measured value 1
2.4 Measured value 2
2.5 Unit for measured value 2
2.6 Measured value symbols for measured value 2
3 Representation of a parameter (here: a parameter with selection list)
3.1 Header containing parameter name and error symbol (if an error is active)
3.2 Selection list; ✓ marks the current parameter value.
4 Input matrix for numbers
5 Input matrix for alphanumeric and special characters
8.1.2 Navigation and selection from a list

Use the operating keys to navigate within the operating menu and to select options from a list.

<table>
<thead>
<tr>
<th>Key</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Minus Key](image) | **"Minus" key**
Henceforth represented by ☻.
- In a selection list: Moves the selection bar upward.
- In an input matrix: Moves the selection bar backward. |
| ![Plus Key](image) | **"Plus" key**
Henceforth represented by ⚡.
- In a selection list: Moves the selection bar downward.
- In an input matrix: Moves the selection bar forward. |
| ![Enter Key](image) | **"Enter" key**
Henceforth represented by §.
- Opens the marked submenu or parameter.
- Confirms a changed parameter value. |
| ![Escape Key](image) | **"Escape" key combination (press keys simultaneously)**
Henceforth represented by ☻ + ⚡.
- Closes a parameter without accepting the changes.
- Quits the current menu layer and returns to the next higher layer. |
8.2 Operating concept

8.2.1 Structure

Basic structure of the operating menu; gray: submenus; white: parameters
8.2.2 Submenus and user roles

The submenus are designed for different user roles. A user role is defined by typical tasks within the lifecycle of the device.

<table>
<thead>
<tr>
<th>User role</th>
<th>Typical tasks</th>
<th>Submenu</th>
</tr>
</thead>
</table>
| **Operator** | Tasks in the ongoing process:
- Configuration of the display.
- Reading measuring values. | "Language"
Defines the operating language (→ 42). |
| | | "Display/Operation"
Contains all parameters which are needed during the ongoing process: configuration of the display (display values, display format, display contrast ...). |
| **Maintenance** | Commissioning:
- Configuration of the measurement.
- Configuration of the measured value processing (scaling, linearization, limit detection etc.).
- Configuration of the measured value output (analog and digital communication interface). | "Setup"
Contains all commissioning parameters. |
| | Error handling | "Diagnostics"
Contains all parameters needed to detect and analyze operational errors. |
| **Expert** | Tasks which require detailed knowledge about the instrument:
- Commissioning of measurements under demanding conditions.
- Optimization of the measurement under demanding conditions.
- Detailed configuration of the communication interface.
- Error diagnosis in difficult cases. | "Expert" |
8.3 Adjust the display contrast
- + (pressed simultaneously): increases the contrast.
- - + (pressed simultaneously): decreases the contrast.

8.4 Unlock the device
If the device has been locked, it must be unlocked before the measurement can be configured.

8.4.1 Revoke hardware locking

The padlock in the header of the measured value screen indicates that the device is hardware-locked. In order to unlock the device, shift the locking switch (which is located below the display module) into the "unlocked" position.
1. Unscrew the lid from the compartment for the display and operating module.
2. Slightly turn the display and operating module to remove it from the compartment.
3. Set the locking switch (WP: Write Protection) into the desired position. (A): unlocked; (B): locked.
4. Attach the display and operating module in the desired orientation until it closes with a snap.
5. Screw the lid onto the compartment.

8.4.2 Revoke software locking

![Input prompt for the access code to unlock software-locked parameters.]

Parameters affected by the software lock are marked by a padlock in front of the parameter name. After pressing [E] an input prompt appears. Enter the user defined locking code to unlock the device.

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setup → Advanced setup → Define access code</td>
<td>To lock the device: Enter a user-defined access code.</td>
</tr>
<tr>
<td>2</td>
<td>Setup → Advanced setup → Enter access code</td>
<td>To unlock the device: Enter the previously defined access code.</td>
</tr>
<tr>
<td>3</td>
<td>Setup → Advanced setup → Enter access code</td>
<td>To lock the device again: Enter a number other than the previously defined access code.</td>
</tr>
</tbody>
</table>
8.5 Set the operating language

1. DEVICE_01

2. Main menu 1-00108

3. Language

4. Language

5. Hauptmenü

A001 3037
8.6 Configuration of a level measurement

![Diagram of level measurement setup with labels LN, R, D, L, E, F]

9 Configuration parameters for level measurements in solids

- **LN** = Length of probe
- **D** = Distance
- **E** = Empty calibration (= Zero point)
- **L** = Level
- **F** = Full calibration (= span)

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setup → Distance unit</td>
<td>Select distance unit.</td>
</tr>
<tr>
<td>2</td>
<td>Setup → Bin property</td>
<td>Select bin property.</td>
</tr>
<tr>
<td>3</td>
<td>Setup → Empty calibration</td>
<td>Enter the distance (E) between the reference point (R) and the minimum level (0%).</td>
</tr>
<tr>
<td>4</td>
<td>Setup → Full calibration</td>
<td>Enter distance (F) between the minimum (0%) and maximum (100%) level.</td>
</tr>
<tr>
<td>5</td>
<td>Setup → Level</td>
<td>Displays the measured level (L).</td>
</tr>
<tr>
<td>6</td>
<td>Setup → Distance</td>
<td>Displays the distance (D) between the reference point (R) and the level (L).</td>
</tr>
<tr>
<td>7</td>
<td>Setup → Signal quality</td>
<td>Displays the signal quality of the level echo.</td>
</tr>
<tr>
<td>8</td>
<td>Setup → Mapping → Confirm distance</td>
<td>Compare the displayed distance to the real distance in order to start the recording of the mapping curve.</td>
</tr>
</tbody>
</table>
8.7 **User-specific applications (operation)**

For details of setting the parameters of user-specific applications, see separate documentation:

- Operator and Maintenance → BA01004F/00/EN (Operating Instructions)
- Experte → GP01000F/00/EN (Description of Device Parameters)